各位老铁们好,相信很多人对指数思维和人工智能都不是特别的了解,因此呢,今天就来为大家分享下关于指数思维和人工智能以及指数思维和人工智能的区别的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!
本文目录
- 机器学习、数据科学、人工智能、深度学习和统计学之间的区别是什么?
- 中美人工智能领域的差距大吗?
- 如果哪天人工智能能研发比自己更强的人工智能,那人类的文明是否会呈指数式爆发?
- 目前在人工智能领域,哪个国家最强?
机器学习、数据科学、人工智能、深度学习和统计学之间的区别是什么?
明晰了数据科学家所具有的不同角色,以及数据科学与机器学习、深度学习、人工智能、统计学等领域的区别。这些概念的区别也一直是人工智能领域热烈讨论的一个话题,Quora、多个技术博客都曾有过解答。也有不少文章对此问题进行了探讨,但似乎业内还未能给出一个权威的、令所有人信服的回答。
数据科学家与分析师VincentGranville明晰了数据科学家所具有的不同角色,以及数据科学与机器学习、深度学习、人工智能、统计学、物联网、运筹学和应用数学等相关领域的比较和重叠。Granville介绍说,由于数据科学是一个范围很广的学科,所以他首先介绍了在业务环境中可能会遇到的数据科学家的类型:你甚至可能会发现你自己原来也是某种数据科学家。和其它任何科学学科一样,数据科学也可能会从其它相关学科借用技术;当然,我们也已经开发出了自己的技术库,尤其是让我们可以以自动化的方式(甚至完全无需人类干预)处理非常大规模的非结构化数据集的技术和算法,进而实时执行交易或进行预测。
1.数据科学家具有哪些不同类型?
要更详细地了解数据科学家的类型,可参阅文章:http://suo.im/28rlX1和http://suo.im/3NNUpd。更多有用的信息可参阅:
数据科学家与数据架构师:http://suo.im/4bRkRG
数据科学家与数据工程师:http://suo.im/3mpo6E
数据科学家与统计学家:http://suo.im/2GGtfG
数据科学家与业务分析师:http://suo.im/3h0hkX
而在最近,数据科学家AjitJaokar则又讨论了A型数据科学家(分析师)和B型数据科学家(建造者)之间的区别:
A型数据科学家能够很好地编写操作数据的代码,但并不一定是一个专家。A型数据科学家可能是一个实验设计、预测、建模、统计推理或统计学方面的事情的专家。然而总体而言,一个数据科学家的工作产品并不是「P值和置信区间」——就像学术界的统计学有时候建议的那样(而且这常常是为传统的制药等等行业工作的)。在谷歌,A型数据科学家被称为统计学家、定量分析师、决策支持工程开发分析师,也有一些被称为数据科学家。
B型数据科学家:这里的B是指Building。B型数据科学家和A型数据科学家具有相同的背景,但他们还是很强的程序员、甚至经验丰富的软件工程师。B型数据科学家主要关注在生产环境中使用数据。他们构建能与用户进行交互的模型,通常是提供推荐(产品、可能认识的人、广告、电影、搜索结果等)。
而对于业务处理优化,我也有自己的看法,我将其分成了ABCD四个方向,其中A表示分析科学(analyticsscience),B表示业务科学(businessscience),C表示计算机科学(computerscience),D则表示数据科学(datascience)。数据科学可能会涉及到编程或数学实践,但也可能不会涉及到。你可以参考http://suo.im/11bR7o这篇文章了解高端和低端的数据科学的差异。在一家创业公司,数据科学家通常要做很多类型的工作,其扮演的工作角色可能包括:执行、数据挖掘师、数据工程师或架构师、研究员、统计学家、建模师(做预测建模等等)和开发人员。
虽然数据科学家常常被看作是经验丰富的R、Python、SQL、Hadoop程序员,而且精通统计学,但这不只不过是冰山一角而已——人们对于数据科学家的这些看法不过是来自于重在教授数据科学的部分元素的数据培训项目而已。但正如一位实验室技术人员也可以称自己为物理学家一样,真正的物理学家远不止于此,而且他们的专业领域也是非常多样化的:天文学、数学物理、核物理、力学、电气工程、信号处理(这也是数据科学的一个领域)等等许多。数据科学也是一样,包含的领域有:生物信息学、信息技术、模拟和量化控制、计算金融、流行病学、工业工程、甚至数论。
对我而言,在过去的十年里,我专注于机器到机器和设备到设备的通信、开发能自动处理大型数据集的系统、执行自动化交易(比如购买网络流量或自动生成内容)。这意味着需要开发能够处理非结构化数据的算法,这也是人工智能、物联网和数据科学的交叉领域,也可被称为深度数据科学(deepdatascience)。其对数学的需求相对较少,也只涉及到较少的编程(大部分是调用API),但其却是相当数据密集型的(包括构建数据系统),并且基于专门为此背景而设计的全新统计技术。
在此之前,我的工作是实时的信用卡欺诈检测。在我事业的早期阶段(大约1990年),我开发过图像远程感知技术,其中包括识别卫星图像的模式(形状和特征,比如湖泊)和执行图像分割:那段时间我的研究工作被称为是计算统计学,但在我的母校,隔壁的计算机科学系也在做着几乎完全一样的事情,但他们把自己的工作叫做是人工智能。
今天,这项工作被称作数据科学或人工智能,其子领域包括信号处理、用于物联网的计算机视觉等。
另外,数据科学家也可以在各种各样的数据科学项目中出现,比如数据收集阶段或数据探索阶段一直到统计建模和已有系统维护。
2.机器学习对比深度学习
在深入探讨数据学习与机器学习之间的区别前,我们先简单讨论下机器学习与深度学习的区别。机器学习一系列在数据集上进行训练的算法,来做出预测或采取形同从而对系统进行优化。例如,基于历史数据,监督分类算法就被用来分类潜在的客户或贷款意向。根据给定任务的不同(例如,监督式聚类),用到的技术也不同:朴素贝叶斯、支持向量机、神经网络、ensembles、关联规则、决策树、逻辑回归或多种方法之间的结合。
这些都是数据科学的分支。当这些算法被用于自动化的时候,就像在自动飞行或无人驾驶汽车中,它被称为人工智能,更具体的细说,就是深度学习。如果数据收集自传感器,通过互联网进行传输,那就是机器学习或数据科学或深度学习应用到了IoT上。
有些人对深度学习有不同的定义。他们认为深度学习是带有更多层的神经网络(神经网络是一种机器学习技术)。深度学习与机器学习的区别这一问题在Quora上也被问到过,下面对此有详细的解释:
人工智能是计算机科学的一个子领域,创造于20世纪60年代,它涉及到解决对人类而言简单却对计算机很难的任务。详细来说,所谓的强人工智能系统应该是能做人类所能做的任何事。这是相当通用的,包含所有的任务,比如规划、到处移动、识别物体与声音、说话、翻译、完成社会或商业事务、创造性的工作(绘画、作诗)等。
自然语言处理只是人工智能与语言有关的一部分。
机器学习被认为是人工智能的一方面:给定一些可用离散术语(例如,在一些行为中,那个行为是正确的)描述的人工智能问题,并给出关于这个世界的大量信息,在没有程序员进行编程的情况下弄清楚「正确」的行为。典型的是,需要一些外部流程判断行为是否正确。在数学术语中,也就是函数:馈入输入,产生正确的输出。所以整个问题就是以自动化的方式建立该数学函数的模型。在二者进行区分时:如果我写出的程序聪明到表现出人类行为,它就是人工智能。但如果它的参数不是自动从数据进行学习,它就不是机器学习。
深度学习是如今非常流行的一种机器学习。它涉及到一种特殊类型的数学模型,可认为它是特定类型的简单模块的结合(函数结合),这些模块可被调整从而更好的预测最终输出。
3.机器学习与统计学之间的区别
《MachineLearningVs.Statistics》这篇文章试图解答这个问题。这篇文章的作者认为统计学是带有置信区间(confidenceintervals)的机器学习,是为了预测或估计数量。但我不同意,我曾建立过不需要任何数学或统计知识的工程友好的置信区间。
4.数据科学对比机器学习
机器学习和统计学都是数据科学的一部分。机器学习中的学习一词表示算法依赖于一些数据(被用作训练集),来调整模型或算法的参数。这包含了许多的技术,比如回归、朴素贝叶斯或监督聚类。但不是所有的技术都适合机器学习。例如有一种统计和数据科学技术就不适合——无监督聚类,该技术是在没有任何先验知识或训练集的情况下检测cluster和cluster结构,从而帮助分类算法。这种情况需要人来标记cluster。一些技术是混合的,比如半监督分类。一些模式检测或密度评估技术适合机器学习。
数据科学要比机器学习广泛。数据科学中的数据可能并非来自机器或机器处理(调查数据可能就是手动收集,临床试验涉及到专业类型的小数据),就像我刚才所说的,它可能与「学习」没有任何关系。但主要的区别在于数据科学覆盖整个数据处理,并非只是算法的或统计类分支。细说之,数据科学也包括:
数据集成(dataintegration)
分布式架构(distributedarchitecture)
自动机器学习(automatingmachinelearning)
数据可视化(datavisualization)
dashboards和BI
数据工程(dataengineering)
产品模式中的部署(deploymentinproductionmode)
自动的、数据驱动的决策(automated,data-drivendecisions)
当然,在许多公司内数据科学家只专注这些流程中的一个。
对于这篇文章,技术顾问SureshBabu给出了一个评论:
这篇文章说明了解使用机器/计算机来处理类似人类决策的任务的统计学习的基本术语是件很麻烦的事。
但文章中「当这些算法被用于自动化的时候,就像在自动飞行或无人驾驶汽车中,它被称为人工智能,更具体的细说,就是深度学习。」这样的说话看起来却有些随意任性。
当过去计算机/机器还不够友好,没有得到广泛使用的时候,统计学家和数据科学家的工作和现在这个领域的工作有很大的不同。比如说,当制造业开始使用计算机辅助后,生产速度和量都发生了巨大的变化——但它仍然是制造业。用制造机器来做原本人类做的程序化工作的想法最早来自19世纪初Jacquard和Bouchon等人。而Jacquard织布机的工作方式和现在计算机控制的织布机的工作方式基本相同。
现在的数据科学是一个知识体系,囊括了统计学和计算方法等等(而且在不同的具体领域不同学科的比例也不一样)。
机器学习(或使用了其它的术语,比如深度学习、认知计算)是让机器像人类一样思考和推理,基本上而言是指通过人工的方法(所以也叫人工智能)来代替人类天生的自然智能——涉及到的任务从简单到复杂都有。比如,无人驾驶汽车(目前)正在模仿人类的驾驶,驾驶条件也是人类在自然情况下会遇到的——我说「目前」是因为也许未来人类将很少能够直接驾驶机器,「驾驶(drive)」这个词本身都可能会改变含义。
这个领域里面也有些滑稽可笑的事情,比如一些基本的东西(比如一个下国际象棋或围棋的算法)被认为可以解释人脑的工作方式。就我们目前的知识水平而言,光是解释鸟或鱼的大脑的工作方式就已经非常困难了——这说明我们还没有真正理解学习的机制。为什么果蝇只需几百个神经元就能做到这么多事情?这还是神经科学的一个未解之谜。而认知是什么以及其在自然环境下是如何工作的也是一个数据科学傲慢地认为自己能解决的重大难题。(不管怎样,降维是一种无监督学习的方法。)
在很多方面,工具以及我们使用工具所做的事情自人类诞生以来就在引导着人类的学习。但这就扯远了。
更多内容请参阅:http://www.jiqizhixin.com/article/2359
中美人工智能领域的差距大吗?
中美之间在人工智能上面的差距很大,美国在人工智能领域的探索由来已久,特别是像“波士顿动力”这种“变态公司”,把谷歌这个世界第一市值,多年以来一直是世界科研投入前三甚至第一的公司都熬得受不了卖掉,卖给了日本软银集团的孙正义。还以波士顿动力公司的人工智能机器人为例,他们生产的机器狗远远强于国内企业的产品,网上中美两只机器狗“会面”的视频,美国机器狗见到同类的中国“同胞”以后,用各种动作打招呼,做出各种动作吸引中国机器狗,比如卧倒,翻滚,可以看出智能化程度更高,但我们的国产机器狗毫无反应,只是原地踏步做重复动作。
前路慢慢,美国是一个创新型国家,而我们虽然是制造大国,但还不是智能制造强国,虽然在近几年冒出来的新的行业领域,我们的劣势相对没那么大,但差距自然很明显,前路漫漫,让我们一起努力,大力发展国内的新兴高科技产业,让我们的生活更美好,子孙后代可以跟西方人一样过着轻松一点的惬意生活。
如果哪天人工智能能研发比自己更强的人工智能,那人类的文明是否会呈指数式爆发?
假如人工智能研制出比人类更厉害的人工智能,我认为分两种情况来分析:
第一种情况:研制出比人类更厉害的人工智能,且人工智能没有自己独立的思维,是人类可控制的。
这样人类文明将成指数爆发,人类可以利用人工智能做很多事情,人类只负责控制人工智能就可以了。
第二种情况:研制出比人类更厉害的人工智能,且人工智能有自己独立的思维,不受人类控制的。
这样人类文明可能被消亡,人类可能会被人工智能替代,人工智能将统治整个地球。将不会有人类文明的存在。
只代表个人肤浅想法,请指正。
目前在人工智能领域,哪个国家最强?
毋庸置疑,美国更强。本轮人工智能浪潮,起源自美国,且主要由私营部门主导。例如,人工智能突然大热,一个主要原因是谷歌旗下的“deepmind”(谷歌收购的一个英国公司)研发出了能下围棋,且胜过人类顶尖棋手的算法。当前,美国企业分布在人工智能领域的各个技术层次、各个细分领域,展现出全面领先优势。这背后是(1)美国良好的市场环境;(2)强大的基础研究实力;(3)远胜他国的人才储备。再往后则是深厚的学术传统、成熟的教学研体系。此外,本次人工智能革命,基础是互联网革命带来的大数据。而互联网是由美国创造的。
因此可以说,此次人工智能革命,乃是美国科学技术和产业界长期深耕,厚积薄发的产物。
但是,中国也颇受瞩目。因为中国是仅次于美国的人工智能技术强国。可以说,全球人工智能浪潮来临时,站立潮头的只有中美两国。其中美国独领风骚,中国紧随其后,虽然有差距,但差距在缩小。中美与其他地区、国家的差距则非常大,而且还将继续扩大。
中国的优势在于:第一,中国政府高度重视人工智能,在战略制定、政策规划领域紧锣密鼓;中国地方政府大力推广人工智能,体现在智能制造、智能交通、智慧城市、智能安保等。(2)中国政府、企业具有大胆尝试的劲头,在法律、伦理、规范方面,采用实用主义做法,努力做到事后监管,防止法律法规阻碍技术进步,在此背景下,中国资本市场也迅速予以积极支持。(3)中国市场容量较大,人工智能企业具有较大的成长空间;民众隐私意识较弱,企业能够方便地积累大数据资源,服务于人工智能技术研发。
当前,中国在计算能力(主要是超算)、数据资源(基于8亿网民的数据流量)方面具有美国无法比拟的优势。但是中国的芯片技术(体现基础研究能力)、人才培养能力(体现高校竞争力)、数据国际化/多样化/多元化(数据代表性和质量)等方面弱于美国。未来中美人工智能竞争将进入缠斗厮杀阶段,短时间还难以分出胜负。
文章到此结束,如果本次分享的指数思维和人工智能和指数思维和人工智能的区别的问题解决了您的问题,那么我们由衷的感到高兴!
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件